# Effect of biofertilizers and phytohormone on growth, productivity and quality of sunflower (*Helianthus annuus*. L)

# K. PRAMANIK AND A. K. BERA

Department of ASEPAN, Institute of Agriculture Visva-Bharati, Sriniketan- 731236 Birbhum, West Bengal

Received: 18-09-2013, Revised: 29-10-2013, Accepted: 10-11-2013

#### ABSTRACT

Biofertilizers like Azotobacter can fix atmospheric nitrogen; phosphate solubilizing bacteria (PSB) and vesicular arbuscular mycorrhiza (VAM) are known to increase immobile nutrients particularly phosphorus in the root rhizosphere for increasing crop productivity. A study was carried out to evaluate the effect of biofertilizers and phytohormone on growth, productivity and quality of sunflower. The experiment was laid out in factorial randomized block design with four levels of biofertilizers inoculation (Azotobacter, PSB + Azotobacter, VAM + Azotobacter and PSB + VAM + Azotobacter and two spraying of homo-brassinolide (HBR) @ 0.5ml litre<sup>-1</sup> of water at budding stage and budding + flowering. The results showed that inoculation of biofertilizers significantly increased aerial biomass production, CGR, test weight, weight of thalamus, number of filled seeds capitulum<sup>-1</sup> and as well as seed yield, biological yield and oil content. The combined inoculation of PSB + VAM + Azotobacter recorded higher seed yield (3225kg ha<sup>-1</sup>) over Azotobacter, PSB + Azotobacter and VAM + Azotobacter inoculation. Application of brassinolide at budding + flowering stages significantly recorded higher value of biomass production, CGR, yield parameters and yield as compared to brassinolide spraying at budding stage alone. The maximum seed yield (2838 kg ha<sup>-1</sup>) and oil yield was obtained from crop receiving the treatment of spraying of brassinolide over only one spraying at budding stage.

Keywords: Azotobacter, homo-brassinolide, PSB, sunflower and VAM

Sunflower (Helianthus annuus) is one of the most widely cultivated high quality oil seed crop in world and it has a relatively high concentration of linoleic acid (Seiler, 2007). The application of Biofertilizer like Azotobacter can fix atmospheric nitrogen which is very much essential for plants growth and yield. Most Indian soils are deficient in phosphorus. P is generally a limiting factor in sunflower growth and yield because P deficiencies reduce the accumulation of crop biomass (Zubillaga et Р al., 2002). Considering the importance of sunflower and the nutrition in need for economizing P fertilizer use, microbial Psolubilization as well as mobilization would be the only possible way to increase plant-available P (Peix et al., 2001). PSB plays a vital role for making unavailable phosphorus to available phosphorus by mineralization of organic phosphate or by solubilization of inorganic phosphate by production of acids (Rodriguez and Fraga, 1999). Another important biofertiliser, Vesicular-Arbuscular Mycorrhizae (VAM) fungi provides significant amount of nutrients to the plants such as copper, zinc, phosphorus and sulphur by making their widely extended hyphal network on the upper or lower side of the soil layer. Favourable response of phosphate solubilizing bacteria (PSB) and vesicular arbuscular mycorrhizae (VAM) have been noticed by many workers (Tilak and Singh, 1994). The use of these biofertilizers may open the new vistas of phosphorus nutrition. Brassinosteroids (BRs) are common plantproduced compounds and its exogenous application

have a broad spectrum effect on physiological responses like cell expansion, vascular differentiation, reproductive development, seed germination, flowering, and fruit set in plants (Cao et al., 2005: Yu et al., 2004). Pramanik and Bera (2012) also reported that brassinosteroids had significant effect on yield and quality of hybrid groundnut. . Hence, an experiment was conducted to study the effect of biofertilizers and phytohormone on growth, productivity and quality of sunflower (Helianthus annuus. L).

#### MATERIALS AND METHODS

A field experiment was conducted during the rabi season of 2010-2011 and 2011-2012 at farmers field adjacent to the farm of the Institute of Agriculture (Palli Siksha Bhavana), Visva-Bharati, Sriniketan, West Bengal. The place is situated at  $23^{0}39$  N latitude,  $87^{0}42$  E longitude and an elevation of 58.9 m above mean sea level. The soil was slightly acidic ( $p^{H}$  5.7), low in available nitrogen (130kg ha<sup>-1</sup>), phosphorus (12.50 kg ha<sup>-1</sup>) and medium in potassium (163.5 kg ha<sup>-1</sup>). In the study, "PAC 36" commercial hybrid of oilseed sunflower, which had early maturating, high yield potential, responsive to higher inputs, more tolerant to diseases and pests, higher drought tolerance, more self fertile, superior in their seed filling ability and higher adaptation ability, was used as plant material. The crop was fertilized with respectively dose of 80:100:100 NPK kg ha<sup>-1</sup>. The experiment was laid out in factorial randomized block design with four levels of biofertilizers

Email: kalipada.pramanik@visva-bharati.ac.in

inoculation (Azotobacter, Phosphate solubilizing bacteria (PSB) + Azotobacter, Vesicular arbuscular mycorrhizae (VAM) + Azotobacter and Phosphate solubilizing bacteria (PSB) + Vesicular arbuscular mycorrhizae (VAM)) + Azotobacter and two spraying of homo-brassinolide (HBR) @ 0.5 ml litre<sup>-1</sup> of water at budding stage and budding + flowering. In all eight treatments replicated three times. The seed was inoculated with Azotobacter and PSB by slurry method whereas the soil was inoculated with VAM inoculums. The VAM inoculums were placed at the seeding depth of the soil and then pre-inoculated seeds were sown according to the treatment. The source of homo-brassinolide was "double" and was sprayed according to treatment for achieve higher grain yield. For determining dry matter accumulation, sunflower plant were cut at ground level from 1 meter row length within earmarked area in each plot kept for the purpose of destructive sampling at 30, 60 and 90 DAS. Plant of each plot were separated into green leaves, stem, capsule, and dried in a hot air oven, kept at 65°C for 48 hours till constant weight were obtained. The dry weight of leave, stem, and capsules were recorded and used for determination of aerial dry matter accumulation. Crop growth rate during the period of two growth stage was determined with the following formula given

$$CGR = \frac{W_2 - W_1}{t_2 - t_1} g m^{-2} day^{-1}$$

Where,  $W_2$  and  $W_1$ , are the final initial total dry weights of all plants per unit land area (m<sup>2</sup>) at the time  $t_2$  and  $t_1$  respectively. The yield parameters and yield were recorded at harvesting stage (95 DAS) of plant. The head samples for yield were also dried to constant weight and threshed mechanically. Seed yield was adjusted to a 10% moisture basis. Filled seed and empty hulls were separated by hand. Hereafter, grain number per head refers to filled grains only. Seed oil was determined using the Soxhlet method in seed kernel (dehulled). Data collected were subjected to statistical analysis of variance according to Gomez and Gomez (1984) using MSTAT computer program.

### **RESULTS AND DISCUSSION**

#### Aerial biomass production

Inoculation biofertilizers of exerted significant effect on crop aerial biomass at all the growth stages in the respective years under study (Table 1). Maximum aerial biomass of crop was recorded in crop with the combined inoculation of PSB + VAM + Azotobacter than those recorded at Azotobacter, PSB+ Azotobacter and VAM+ Azotobacter during both the years. Sunflower crop with Azotobacter alone produced the lowest aerial biomass as compared to other combined biofertilizers treatments. In respect to aerial biomass production, there was no significant difference between the treatment of PSB + Azotobacter and VAM + Azotobacter. Increased aerial biomass of crop by PSB + VAM + Azotobacter might be due to better development of root systems resulting in tapping larger volume of bound soil water and nutrients especially phosphorus which plays a significant role in several physiological and biochemical plant activities like photosynthesis, transformation of sugar to starch, and transporting of the genetic traits. This result is in conformity with the findings of Mukherjee and Rai (2000) and Pramanik (2003). Twice spraying of homo-brassinolide at budding + flowering stage recorded significantly highest aerial biomass production of crop (377.33g) over one spraying of homo-brassinolide at budding stage at 90 DAS (169.22g) respectively.

| Treatments             | 30 DAS  |        |          |         | 60 DAS  |          | <b>90 DAS</b> |         |        |  |
|------------------------|---------|--------|----------|---------|---------|----------|---------------|---------|--------|--|
|                        | 2010-11 | 2011-1 | 2 Pooled | 2010-11 | 2011-12 | 2 Pooled | 2010-11       | 2011-12 | Pooled |  |
| <b>Bio-fertilizers</b> |         |        |          |         |         |          |               |         |        |  |
| Azotobacter            | 10.13   | 10.58  | 10.35    | 85.84   | 91.76   | 88.80    | 161.71        | 176.74  | 169.22 |  |
| PSB + Azotobacter      | 11.45   | 11.73  | 11.58    | 115.61  | 119.44  | 117.52   | 260.78        | 294.45  | 277.61 |  |
| VAM + Azotobacter      | 11.72   | 12.12  | 11.92    | 124.99  | 129.30  | 127.14   | 268.97        | 299.80  | 284.38 |  |
| PSB+VAM+Azotobacter    | r 13.06 | 13.75  | 13.40    | 161.32  | 165.64  | 163.47   | 359.15        | 395.53  | 377.33 |  |
| SEm (±)                | 0.24    | 0.20   | 0.15     | 3.52    | 3.51    | 2.40     | 5.82          | 6.15    | 4.10   |  |
| LSD(P=0.05)            | 0.73    | 0.61   | 0.43     | 10.70   | 10.67   | 6.93     | 17.66         | 18.67   | 11.8   |  |
| Homo-brassinolide      |         |        |          |         |         |          |               |         |        |  |
| Budding stage          | 11.50   | 11.97  | 11.74    | 120.86  | 126.53  | 123.69   | 241.16        | 262.67  | 251.92 |  |
| Budding + flowering    | 11.66   | 12.11  | 11.89    | 123.02  | 126.54  | 124.77   | 284.13        | 320.58  | 302.35 |  |
| stage                  |         |        |          |         |         |          |               |         |        |  |
| SEm (±)                | 0.17    | 0.14   | 0.10     | 2.49    | 7.54    | 1.70     | 4.11          | 4.35    | 2.90   |  |
| LSD (0.05)             | NS      | NS     | NS       | NS      | NS      | NS       | 12.49         | 13.20   | 8.37   |  |

Similar types of results were reported by Increased dry matter accumulation might be due to Ramraj *et al.* (1997) and Pramanik *et al.* (2012). positive effect of homo-brassinolide on meristamatic

tissues of plant as well as in increasing number and size of cell (Prakash *et al.*, 2008).

## Crop growth rate (CGR)

It was found from the data that CGR increased progressively with the advancement of the age of the crop upto 60 to 75 DAS. Application of PSB+VAM+Azotobacter recorded significantly higher CGR value over Azotobacter, Azotobacter +PSB and Azotobacter +VAM at all the growth stages during both the years of experiments. The higher crop growth rate among the biofertilizers might be due to higher dry matter accumulation. Since the CGR is a function of total dry matter production. This result is in full agreement with Shinde (1990). Twice spraying of homo-brassinolide at budding + flowering stage was recorded significantly highest CGR value whereas one spraying of homo-brassinolide at budding stage recorded the lowest value at 60 to75 and 75 to 90 DAS.

## Test weight (1000 seed weight)

It was revealed from the result (pooled) that PSB + VAM+ Azotobacter recorded the maximum test weight which was significantly different from other treatments of biofertilizers (Table 3). The minimum test weight was recorded in the crop receiving Azotobacter treatment during both the years of experiment. Hence there is a strong positive synergistic effects that caused to improving photosynthesis by increasing water and nutrients absorption and this leading to producing more assimilate and improving plant growth, as result 1000seed weight increased as compared with Azotobacter, PSB + Azotobacter and VAM + Azotobacter inoculation. Similar result was reported by Barea et al., (1975). The maximum test weight was recorded with two time spraying of homo-brassinolide at budding + flowering stage during both the years of experiments. The minimum test weight was obtained from crop receiving one spraying of homobrassinolide at budding stage. The results are conformity with those of Mitchell and Gregory (1972).

# Weight of thalamus

PSB + VAM + Azotobacter recorded the maximum weight of thalamus (45.89 g) whereas the minimum weight of thalamus (29.05 g) was obtained with the treatment of Azotobacter inoculation (Table 3). The second best treatment was VAM + Azotobacter inoculation (38.67 g) but it was at par with PSB + Azotobacter (36.88 g) during both the years. The high response of plant to the PSB + VAM + Azotobacter inoculation might be due to mobilization of available P by the native soil microflora, or attributed of increased phosphate solubilizing bacteria activity in the rhizosphere following PSB + VAM + *Azotobacter* application and consequently by enhanced P solubilization. For these reason, it's enhanced P uptake by the crops and to an increase thalamus weight ultimately leading to higher seed yields. Similar result was reported by Barea *et al.*, (1975) and Ekin (2010). Two spraying of homobrassinolide at budding + flowering stage was recorded the highest weight of thalamus (pooled) of 41.25 g over one spray at budding stage (34.00 g) during both the years. The results are conformity with those of Mitchell and Gregory (1972).

# Number of filled seed capitulum<sup>-1</sup>

The combined inoculation of PSB + VAM+ Azotobacter treated plant had 35.6 % more number of filled seed capitulum<sup>-1</sup> (pooled) in compared to Azotobacter (Table 3). It means there is a strong synergistic effect among PSB, VAM and Azotobacter. It is well known that phosphorous solubilizing bacteria can increase the available phosphorous in the soil which could enhance the seed number in plant (Tohidi-Moghaddam et al., 2004). On the other hand, VAM in rhizosphere mobilizes and facilitates the uptake of many inorganic nutrients such as phosphorus, zinc, molvbdenum, copper and iron growth and increasing portion for plant of generating organs such as number of filled seed capitulum<sup>-1</sup>. Growth promoting hormones like indole acetic acid followed by cytokinin generated by Azotobacter can cause increasing preserved material through growing side roots and improving root weight and vegetation growth and ultimately number of filled seed capitulum<sup>-1</sup>. Twice spraying of homobrassinolide at budding + flowering stage was recorded significant highest (524.5) number of filled seed capitulum<sup>-1</sup> during both years. The lowest (457.7) number of filled seed capitulum<sup>-1</sup> was obtained from the crop receiving one spraying of homo-brassinolide at budding stage during the both the years of experiments, respectively.

# Seed yield

The highest seed yield (3225 kg ha<sup>-1</sup>) was produced in crop receiving PSB+VAM+Azotobacter inoculation (Table 4). The crop with Azotobacter treatment produced the lowest seed vield (1969kg ha<sup>-1</sup>). The result of pooled analysis showed that combined inoculation of phosphate solubilizing bacteria + Vesicular arbuscular mycorrhizae resulted in 63.78, 37.70 and 21.79 % higher seed yield over Azotobacter, PSB + Azotobacter and VAM + Azotobacter inoculation, respectively. High crop productivity with PSB + VAM + Azotobacter inoculation was mainly responsible for better growth of the crop, greater test weight, thalamus weight and seed filling. The result is conformity with those of Jones and Sreenivas (1993).

| Treatments             | 30-45 DAS |         | 45-60   | 45-60 DAS |         | DAS     | 75 –90 DAS |         |
|------------------------|-----------|---------|---------|-----------|---------|---------|------------|---------|
|                        | 2010-11   | 2011-12 | 2010-11 | 2011-12   | 2010-11 | 2011-12 | 2010-11    | 2011-12 |
| <b>Bio-fertilizers</b> |           |         |         |           |         |         |            |         |
| Azotobacter            | 1.24      | 1.39    | 3.81    | 4.02      | 3.06    | 3.06    | 2.00       | 2.61    |
| PSB + Azotobacter      | 2.69      | 2.77    | 4.26    | 4.41      | 4.66    | 5.49    | 5.02       | 6.17    |
| VAM + Azotobacter      | 2.73      | 2.92    | 4.82    | 4.89      | 4.56    | 5.06    | 5.04       | 6.30    |
| PSB+VAM+Azotobacter    | 3.63      | 3.72    | 6.26    | 6.41      | 6.01    | 6.80    | 7.18       | 8.53    |
| SEm (±)                | 0.10      | 0.08    | 0.26    | 0.24      | 0.31    | 0.33    | 0.39       | 0.48    |
| LSD (P=0.05)           | 0.30      | 0.26    | 0.79    | 0.75      | 0.94    | 1.00    | 1.18       | 1.45    |
| Homo-brassinolide      |           |         |         |           |         |         |            |         |
| Budding stage          | 2.56      | 2.67    | 4.72    | 4.96      | 3.74    | 3.86    | 4.27       | 5.21    |
| Budding + flowering    | 2.57      | 2.72    | 4.85    | 4.90      | 5.39    | 6.34    | 5.34       | 6.59    |
| stage                  |           |         |         |           |         |         |            |         |
| SEm (±)                | 0.07      | 0.06    | 0.18    | 0.17      | 0.22    | 0.24    | 0.27       | 0.34    |
| LSD (0.05)             | NS        | NS      | NS      | NS        | 0.66    | 0.71    | 0.84       | 1.03    |

Table 2: Crop growth rate (g m<sup>-2</sup> d<sup>-1</sup>) of sunflower as influenced by biofertilizers and homo-brassinolide

Table 3: Yield attributes of sunflower as influenced by biofertilizers and homo-brassinolide

| Treatments             | Test weight |         |             | Wei     | ght of tha | lamus                   | No. of filled seed |         |        |  |
|------------------------|-------------|---------|-------------|---------|------------|-------------------------|--------------------|---------|--------|--|
|                        | (g)         |         | <b>(g</b> ) |         |            | capitulum <sup>-1</sup> |                    |         |        |  |
| <b>Bio-fertilizers</b> | 2010-11     | 2011-12 | Pooled      | 2010-11 | 2011-12    | Pooled                  | 2010-11            | 2011-12 | Pooled |  |
| Azotobacter            | 47.0        | 47.2    | 47.11       | 28.71   | 29.40      | 29.05                   | 414.8              | 422.1   | 418.5  |  |
| PSB + Azotobacter      | 48.6        | 49.4    | 49.05       | 36.28   | 37.49      | 36.88                   | 466.7              | 475.4   | 471.1  |  |
| VAM + Azotobacter      | 49.7        | 50.5    | 50.13       | 38.21   | 39.13      | 38.67                   | 503.6              | 511.0   | 507.3  |  |
| PSB+VAM+Azotobacter    | 53.3        | 54.3    | 53.84       | 44.37   | 47.42      | 45.89                   | 563.7              | 571.4   | 567.6  |  |
| SEm (±)                | 0.54        | 0.60    | 0.40        | 0.97    | 1.05       | 0.69                    | 6.8                | 6.9     | 4.6    |  |
| LSD (0.05)             | 1.63        | 1.82    | 1.15        | 2.96    | 3.19       | 1.99                    | 20.6               | 21.0    | 13.2   |  |
| Homo-brassinolide      |             |         |             |         |            |                         |                    |         |        |  |
| Budding stage          | 47.6        | 48.6    | 48.17       | 32.66   | 35.33      | 34.00                   | 453.9              | 461.5   | 457.7  |  |
| Budding + flowering    | 51.69       | 52.10   | 51.90       | 41.11   | 41.38      | 41.25                   | 520.5              | 528.4   | 524.5  |  |
| stage                  |             |         |             |         |            |                         |                    |         |        |  |
| SEm (±)                | 0.38        | 0.42    | 0.28        | 0.69    | 0.74       | 0.49                    | 4.8                | 4.9     | 3.3    |  |
| LSD (0.05)             | 1.15        | 1.28    | 0.81        | 2.09    | 2.26       | 1.41                    | 14.5               | 14.8    | 9.53   |  |

Table 4: Yield, harvest index and oil % of sunflower as influenced by biofertilizers and homo-brassinolide

| Treatments             | Seed    | yields (kg | kg ha <sup>-1</sup> ) Biological yield (kg ha <sup>-1</sup> ) |         |         | kg ha <sup>-1</sup> ) | Oil yield (kg ha <sup>-1</sup> ) |           |        |  |
|------------------------|---------|------------|---------------------------------------------------------------|---------|---------|-----------------------|----------------------------------|-----------|--------|--|
| <b>Bio-fertilizers</b> | 2010-11 | 2011-12    | Pooled                                                        | 2010-11 | 2011-12 | Pooled                | 2010-11                          | 2011-12   | Pooled |  |
| Azotobacter            | 1866    | 2073       | 1969                                                          | 7295    | 7729    | 7512                  | 579                              | 667       | 622    |  |
| PSB + Azotobacter      | 2264    | 2421       | 2342                                                          | 8337    | 8838    | 8587                  | 744                              | 816       | 780    |  |
| VAM + Azotobacter      | 2545    | 2752       | 2648                                                          | 8980    | 9453    | 9216                  | 871                              | 967       | 918    |  |
| PSB+VAM+Azotobacter    | 3189    | 3263       | 3225                                                          | 10271   | 10300   | 10289                 | 1175                             | 1245      | 1210   |  |
| SEm (±)                | 65      | 59         | 44                                                            | 130     | 152     | 103                   | 25                               | 16        | 14     |  |
| LSD (0.05)             | 197     | 181        | 127                                                           | 395     | 462     | 297                   | 76                               | <b>48</b> | 40     |  |
| Homo-brassinolide      |         |            |                                                               |         |         |                       |                                  |           |        |  |
| Budding stage          | 2171    | 2337       | 2254                                                          | 8106    | 8471    | 8288                  | 716                              | 785       | 750    |  |
| Budding + flowering    | 2760    | 2917       | 2838                                                          | 9335    | 9692    | 9513                  | 968                              | 1061      | 1015   |  |
| stage                  |         |            |                                                               |         |         |                       |                                  |           |        |  |
| SEm (±)                | 45      | 42         | 31                                                            | 92      | 107     | 72                    | 17                               | 11        | 10     |  |
| LSD (0.05)             | 139     | 128        | 89                                                            | 279     | 327     | 207                   | 54                               | 34        | 28     |  |

Spraying of homo-brassinolide at budding + (2838 kg ha<sup>-1</sup>) as compared to one spraying at budding flowering stage recorded significant higher seed yield stage (2254 kg ha<sup>-1</sup>). The result of pooled analysis

showed that two spraying of homo-brassinolide increased 25.90 % higher seed yield as compared to one spraying. Similarly higher productivity with two spraying of homo-brassinolide might be due to better growth of the crop, greater test weight, thalamus weight and seed filling. The similar results are in conformity with those of Nayak and Murthy, (1980) and Chowdhary *et al.* (1994).

#### **Biological yield**

Biological yield (Table 4) was significantly influenced by biofertilizers inoculation. Inoculation of PSB + VAM + *Azotobacter* recorded significantly higher biological yield as compared to *Azotobacter*, PSB + *Azotobacter* and VAM + *Azotobacter* inoculation. Higher biological yield might be due to better growth and yield. Shinde (1990) and Yadav and Shrivastava (1997) were recorded similar findings. Twice spraying of homo-brassinolide at budding + flowering stage was significantly higher biological yield as compared to one spraying at budding stage. The result is in conformity with those of Meudt *et al.*, (1983). Combined inoculation of PSB + VAM + *Azotobacter* recorded significantly higher oil yield as compared to other treatment combinations (Table 4). The spraying of homo-brassinolide at budding + flowering stage recorded maximum oil yield. The increase in oil yield might be due to higher seed yield. Similar type of result was reported by Mai *et al.* (1989).

#### **Interaction effect**

The interaction effect of biofertilizers and homo-brassinolide on biomass accumulation, test weight, weight of thalamus, number of filled seed acpitulam<sup>-1</sup>, seed yield, biological yield and oil yield were found significant. The maximum biomass accumulation and number of filled seed acpitulam<sup>-1</sup>; highest test weight, weight of thalamus, seed yield, biological yield and oil yield were recorded in crop receiving PSB+VAM + Azotobacter inoculation at twice spraying of homo-brassinolide at budding +flowering stage (Table 5). The minimum biomass accumulation and number of filled seed acpitulam<sup>-1</sup>; lowest test weight, weight of thalamus, seed yield, biological yield and oil yield were obtained from the crop receiving Azotobacter inoculation treatment along with one spraying of budding stage.

#### Oil yield

Table 5: Interaction effect of biofertilizers and homo-brassinolide on yied and yield parameters of sunflower (Pooled)

|                           | Biomass<br>90 DAS | Test<br>weight | Weight of thalamus | No. of filled seed      | Seed yield<br>(kg ha <sup>-1</sup> ) | Biological<br>yield    | Oil yield<br>(kg ha <sup>-1</sup> ) |
|---------------------------|-------------------|----------------|--------------------|-------------------------|--------------------------------------|------------------------|-------------------------------------|
| Interaction               | 90 DAS            | (g)            | (g)                | capitulum <sup>-1</sup> | (kg lla )                            | (kg ha <sup>-1</sup> ) | (kg na )                            |
| Azotobacter +HBR at       | 150.24            | 45.46          | 24.72              | 383.0                   | 1850                                 | 7303                   | 579                                 |
| Budding                   |                   |                |                    |                         |                                      |                        |                                     |
| Azotobacter+ HBR at       | 188.21            | 48.76          | 33.38              | 454.0                   | 2088                                 | 7721                   | 666                                 |
| Budding + flowering stage |                   |                |                    |                         |                                      |                        |                                     |
| PSB + Azotobacter +       | 259.17            | 48.05          | 34.96              | 449.1                   | 2089                                 | 7951                   | 744                                 |
| Budding                   |                   |                |                    |                         |                                      |                        |                                     |
| PSB+Budding + flowering   | 296.05            | 50.05          | 38.80              | 493.0                   | 2595                                 | 9223                   | 816                                 |
| stage                     |                   |                |                    |                         |                                      |                        |                                     |
| VAM + Azotobacter+        | 263.29            | 48.95          | 36.29              | 480.1                   | 2328                                 | 8554                   | 871                                 |
| Budding                   |                   |                |                    |                         |                                      |                        |                                     |
| VAM+Budding + flowering   | 305.47            | 51.31          | 41.05              | 534.5                   | 2968                                 | 9878                   | 966                                 |
| stage                     |                   |                |                    |                         |                                      |                        |                                     |
| PSB+VAM+Azotobacter+      | 334.97            | 50.21          | 40.01              | 518.7                   | 2749                                 | 9346                   | 1175                                |
| Budding                   |                   |                |                    |                         |                                      |                        |                                     |
| PSB+VAM+Budding +         | 419.70            | 57.46          | 51.77              | 616.4                   | 3701                                 | 11231                  | 1245                                |
| flowering stage           |                   |                |                    |                         |                                      |                        |                                     |
| SEm (±)                   | 5.80              | 0.56           | 0.98               | 6.63                    | 62.4                                 | 145                    | 20.6                                |
| LSD (0.05)                | 16.75             | 1.62           | 2.83               | 19.14                   | 180.17                               | 418.67                 | 59.48                               |

*Note: HBR= Homo-brassinolide* 

The highest seed yield (3701 kg ha<sup>-1</sup>) was recorded in crop receiving PSB+VAM+*Azotobacter* inoculation at twice spraying of homo-brassinolide at budding + flowering stage. The lowest grain yield (1850 kg ha<sup>-1</sup>) was obtained from the crop receiving *Azotobacter* inoculation treatment along with one

spraying of homo-brassinolide at budding stage. Based on the above results and discussion, it can be said that inoculation of PSB + VAM+ *Azotobacter* as well as two spraying of homo-brassnolide at budding + flowering stages had a significant influence on aerial biomass production, yield attributes, seed yield, biological yield and oil yield. This can partially encourage farming with the mere use of biological fertilizers (organic systems).

## REFERENCES

- Barea, J.M., Azcon, R. and Hayman, D.S. 1975. Possible synergistic interaction between Endogene and phosphate solubilizing bacteria in low phosphorus soils. *In. Endomycorrhizas* (Eds. Academic press. London. New York, pp. 409-18.
- Cao, S., Xu, Q. and Cao, Y. 2005. Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in *Arabidopsis*. *Physiol. Plantarum*, **123**:57–66.
- Ekin, Z. 2010. Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower (*Helianthus annuus* L.) in the presence of phosphorus fertilizer. *African J. Biotech.*, 9: 3794-3800.
- Gomez, K.A and Gomez, A.A. 1984. *Statistical Procedure for Agricultural Research*. 2<sup>nd</sup> Edition, John Wiley and Sons. New York.
- Jones, N.P. and Sreeniras, M.N. 1993. Effect of inoculation of VA mycorrhiza and phosphate solubilizing bacteria on rhizosphere microflora of sunflower. II. *Azotobacter* and phosphate solubilizing bacteria. J. Ecotoxicol. Envir. Monit., 3: 55-58.
- Mai, Y.Y., Lin, J.M., Zeng, X.L. and Pan, R.Z. 1989.
  Effects of brassinolide on the activity of nitrate reductase in rice seedlings. *Pl. Physiol. Communi.* 2: 50-52.
- Meudt, W.J., Thompson, M.J. and Bennett, H.W. 1983. Investigations on the mechanism of brassinosteroid response. III. Techniques for potential enhancement of crop production. *Proc.* 10<sup>th</sup> Ann. Meeting of the Plant Growth Regulators Soci. of America, Madison, USA. pp.312-18.
- Mitchell, J.W. and Gregory, L.E. 1972. Enhancement of overall growth, a new response to brassins. *Nature*, **239**:253-54.
- Mukherjee, P.K. and Rai, R.K. 2000. Effect of Vesicular arbuscular mycorrhizae and phosphate solubilizing bacteria on growth, yield and phosphorus uptake by wheat (*Triticum aestivum*) and chick pea (*Cicer arietinum*). *Indian J. Agron.*, **45**: 602-607.
- Nayak, S,K. and Murthy, K.S. 1980. Effect of varying light intensities on growth parameters in rice. *Indian J. Pl. Physiol.*, 23: 309-16.
- Peix, A., Mateos, P.F., Barrueco, C.R., Molina, E.M. and Velazquez, E. 2001. Growth promotion of common bean (*Phaseolus vulgaris* L.) by a strain of *Burkholderia cepacia* under growth chamber conditions. *Soil Biol. Biochem.*, 33:1927-35.

- Prakash, M., Suganthi, S., Gokulakrishnan, J. and Sabesan, T. 2008. Effect of Homobrassinolide on Growth, Physiology and Biochemical Aspects of Sesame. *Karnataka J. Agril. Sci.*, 20:110-12.
- Pramanik, K. 2003. Effect of levels and mode of phosphorus application with and without biofertilizers in chickpea (*Cicer arietinum*). *Ph.D.Thesis*, Division of Agronomy, IARI, New Delhi.
- Pramanik, K. and Bera, A.K. 2012b. Response of biofertilizers and phytohormone on growth and yield of chickpea (*Cicer aritinum L.*). J. Crop Weed, 8: 45-49.
- Ramraj, V.M., Vyas, B.N., Godrej, N.B., Mistry, K. B., Swami, B.N. and Singh, N. 1997. Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton. *J. Agril. Sci.*, **128**: 405-13.
- Rodriguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. *Biotech. Adv.*, **17**: 319-39.
- Seiler, G.J. 2007. Wild annual *Helianthus anomalus* and *H. deserticola* for improving oil content and quality in sunflower. *Indian Crop Prod.*, **25**: 95-100.
- Shinde, V.S. 1990. Response of chickpea (*Cicer arietinum* L.) to phosphorus with and without PSB (Microphos) as influenced by applied sulphur. *Ph.D. Thesis*, Division of Agronomy, IARI. New Delhi.
- Tilak, K.V.B.R. and Singh, G. 1994. Bofertilizer research gape and future needs. *Fert. News*, **39**:11-17.
- Tohidi-Moghaddam, H., Sani, B. and Ghooshchi, F. 2004. The effect of nitrogen fixing and phosphate solubilizing microorganism on some quantitative parameters on soybean from sustainable agricultural point of views. *Proc.* 8<sup>th</sup> *Agron. Pl. Breed. Cong. of Iran*, Guilan University, Iran.
- Yadav, S.P., Shrivastava, U.K., 1997. Response of chickpea (*Cicer arietinum*) to phosphorus and biofertilizer. *Legume Res.*, 20: 137-40.
- Yu, J.Q., Huang, L.F. and Hu, W.H. 2004. A role for brassinosteroids in the regulation of photosynthesis in *Cucumis sativus*. J. Exp. Bot., 55:1135–43.
- Zubillaga, M.M., Aristi, J.P. and Lavado, R.S. 2002. Effect of phosphorus and nitrogen fertilization on sunflower (*Helianthus annuus* L.) nitrogen uptake and yield. J. Argon. Crop Sci., 188:267-74.